Approximation by Nearest Integer Continued Fractions (II).

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purely Periodic Nearest Square Continued Fractions

We give three sets of conditions to determine whether a real quadratic surd ξ = (P + √ D)/Q has a purely periodic nearest square continued fraction expansion. One set is a few inequalities involving only ξ and its conjugate ξ = (P − √ D)/Q. Another set is a few inequalities involving only P/ √ D and Q/ √ D. A third set of conditions and additional results are presented.

متن کامل

Continued fractions in local fields, II

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

Exponents of Diophantine Approximation and Sturmian Continued Fractions

– Let ξ be a real number and let n be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents w n (ξ) and w * n (ξ) defined by Mahler and Koksma. We calculate their six values when n = 2 and ξ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we...

متن کامل

Continued fractions with low complexity: Transcendence measures and quadratic approximation

We establish measures of non-quadraticity and transcendence measures for real numbers whose sequence of partial quotients has sublinear block complexity. The main new ingredient is an improvement of Liouville’s inequality giving a lower bound for the distance between two distinct quadratic real numbers. Furthermore, we discuss the gap between Mahler’s exponent w2 and Koksma’s exponent w ∗ 2 .

متن کامل

Quadratic approximation to automatic continued fractions Sur l’approximation quadratique des fractions continues automatiques

We study the sets of values taken by the exponents of quadratic approximation w2 and w ∗ 2 evaluated at real numbers whose sequence of partial quotients is generated by a finite automaton. Among other results, we show that these sets contain every sufficiently large rational number and also some transcendental numbers. Résumé. Nous étudions les ensembles des valeurs prises par les exposants d’a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1994

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-12476